93 research outputs found

    Malaria parasites (Plasmodium spp.) infecting introduced, native and endemic New Zealand birds

    Get PDF
    Avian malaria is caused by intracellular mosquito-transmitted protist parasites in the order Haemosporida, genus Plasmodium. Although Plasmodium species have been diagnosed as causing death in several threatened species in New Zealand, little is known about their ecology and epidemiology. In this study, we examined the presence, microscopic characterization and sequence homology of Plasmodium spp. isolates collected from a small number of New Zealand introduced, native and endemic bird species. We identified 14 Plasmodium spp. isolates from 90 blood or tissue samples. The host range included four species of passerines (two endemic, one native, one introduced), one species of endemic pigeon and two species of endemic kiwi. The isolates were associated into at least four distinct clusters including Plasmodium (Huffia) elongatum, a subgroup of Plasmodium elongatum, Plasmodium relictum and Plasmodium (Noyvella) spp. The infected birds presented a low level of peripheral parasitemia consistent with chronic infection (11/15 blood smears examined). In addition, we report death due to overwhelming parasitemia in a blackbird, a great spotted kiwi and a hihi. These deaths were attributed to infections with either Plasmodium spp. lineage LINN1 or P. relictum lineage GRW4. To the authors’ knowledge, this is the first published report of Plasmodium spp. infection in great spotted and brown kiwi, kereru and kokako. Currently, we are only able to speculate on the origin of these 14 isolates but consideration must be made as to the impact they may have on threatened endemic species, particularly due to the examples of mortality

    Testing epidemiological functional groups as predictors of avian haemosporidia patterns in southern Africa

    Get PDF
    Understanding the dynamics of multihost parasites and the roles of different host species in parasite epidemiology requires consideration of the whole animal community. Host communities may be composed of hundreds of interacting species, making it necessary to simplify the problem. One approach to summarizing the host community in a way that is relevant to the epidemiology of the parasite is to group host species into epidemiological functional groups (EpiFGs). We used EpiFGs to test our understanding of avian malaria (Plasmodium and Haemoproteus) dynamics in four communities of wetland-associated birds in southern Africa. Bird counts and captures were undertaken every 2–4 months over 2 yr and malaria was diagnosed by nested PCR. One hundred and seventy-six bird species were allocated to a set of EpiFGs according to their assumed roles in introducing and maintaining the parasite in the system. Roles were quantified as relative risks from avian foraging, roosting, and movement ecology and assumed interaction with vector species. We compared our estimated a priori risks to empirical data from 3414 captured birds from four sites and 3485 half-hour point counts. After accounting for relative avian abundance, our risk estimates significantly correlated with the observed prevalence of Haemoproteus but not Plasmodium. Although avian roosting height (for both malarial genera) and movement ecology (for Plasmodium) separately influenced prevalence, host behavior alone was not sufficient to predict Plasmodium patterns in our communities. Host taxonomy and relative abundance were also important for this parasite. Although using EpiFGs enabled us to predict the infection patterns of only one genus of heamosporidia, our approach holds promise for examining the influence of host community composition on the transmission of vector-borne parasites and identifying gaps in our understanding of host–parasite interactions. (RĂ©sumĂ© d'auteur

    Blood Parasites in Owls with Conservation Implications for the Spotted Owl (Strix occidentalis)

    Get PDF
    The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls

    Multiple host-switching of Haemosporidia parasites in bats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There have been reported cases of host-switching in avian and lizard species of <it>Plasmodium </it>(Apicomplexa, Haemosporidia), as well as in those infecting different primate species. However, no evidence has previously been found for host-swapping between wild birds and mammals.</p> <p>Methods</p> <p>This paper presents the results of the sampling of blood parasites of wild-captured bats from Madagascar and Cambodia. The presence of Haemosporidia infection in these animals is confirmed and cytochrome <it>b </it>gene sequences were used to construct a phylogenetic analysis.</p> <p>Results</p> <p>Results reveal at least three different and independent Haemosporidia evolutionary histories in three different bat lineages from Madagascar and Cambodia.</p> <p>Conclusion</p> <p>Phylogenetic analysis strongly suggests multiple host-switching of Haemosporidia parasites in bats with those from avian and primate hosts.</p

    Characterization of MHC-I in the blue tit (Cyanistes caeruleus) reveals low levels of genetic diversity and trans-population evolution across European populations

    Get PDF
    The major histcompatibility complex (MHC) is a vital component of the adaptive immune system in all vertebrates. This study is the first to characterize MHC class I (MHC-I) in blue tits (Cyanistes caeruleus), and we use MHC-I exon 3 sequence data from individuals originating from three locations across Europe: Spain, the Netherlands to Sweden. Our phylogeny of the 17 blue tit MHC-I alleles contains one allele cluster with low nucleotide diversity compared to the remaining more diverse alleles. We found a significant evidence for balancing selection in the peptide-binding region in the diverse allele group only. No separation according to geographic location was found in the phylogeny of alleles. Although the number of MHC-I loci of the blue tit is comparable to that of other passerine species, the nucleotide diversity of MHC-I appears to be much lower than that of other passerine species, including the closely related great tit (Parus major) and the severely inbred Seychelles warbler (Acrocephalus sechellensis). We believe that this initial MHC-I characterization in blue tits provides an important step towards understanding the mechanisms shaping MHC-I diversity in natural populations

    Immunological Change in a Parasite-Impoverished Environment: Divergent Signals from Four Island Taxa

    Get PDF
    Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis) and two island endemics (Acrocephalus aequinoctialis and A. rimitarae) and then comparing the results to those observed in closely-related mainland counterparts. The prevalence of blood parasites was significantly lower in 3 of 4 island taxa, due in part to the absence of certain parasite lineages represented in mainland populations. Indices of genetic diversity were unchanged in the island population of N. temporalis; however, allelic richness was significantly lower in the island population of Z. lateralis while both allelic richness and heterozygosity were significantly reduced in the two island-endemic species examined. Although parasite prevalence and genetic diversity generally conformed to expectations for an island system, we did not find evidence for a pattern of uniformly altered immune responses in island taxa, even amongst endemic taxa with the longest residence times. The island population of Z. lateralis exhibited a significantly reduced inflammatory cell-mediated response while levels of natural antibodies remained unchanged for this and the other recently introduced island taxon. In contrast, the island endemic A. rimitarae exhibited a significantly increased inflammatory response as well as higher levels of natural antibodies and complement. These measures were unchanged or lower in A. aequinoctialis. We suggest that small differences in the pathogenic landscape and the stochastic history of mutation and genetic drift are likely to be important in shaping the unique immunological profiles of small isolated populations. Consequently, predicting the impact of introduced disease on the many other endemic faunas of the remote Pacific will remain a challenge

    The effect of dietary antioxidant supplementation in a vertebrate host on the infection dynamics and transmission of avian malaria to the vector.

    Get PDF
    Host susceptibility to parasites is likely to be influenced by intrinsic factors, such as host oxidative status determined by the balance between pro-oxidant production and antioxidant defences. As a result, host oxidative status acts as an environmental factor for parasites and may constrain parasite development. We evaluated the role of host oxidative status on infection dynamics of an avian malarial parasite by providing canaries (Serinus canaria) with an antioxidant supplementation composed of vitamin E (a lipophilic antioxidant) and olive oil, a source of monounsaturated fatty acids. Another group received a standard, non-supplemented food. Half of the birds in each group where then infected with the haemosporidian parasite, Plasmodium relictum. We monitored the parasitaemia, haematocrit level, and red cell membrane resistance, as well as the transmission success of the parasite to its mosquito vector, Culex pipiens. During the acute phase, the negative effect of the infection was more severe in the supplemented group, as shown by a lower haematocrit level. Parasitaemia was lower in the supplemented group during the chronic phase only. Mosquitoes fed on supplemented hosts were more often infected than mosquitoes fed on the control group. These results suggest that dietary antioxidant supplementation conferred protection against Plasmodium in the long term, at the expense of a short-term negative effect. Malaria parasites may take advantage of antioxidants, as shown by the increased transmission rate in the supplemented group. Overall, our results suggest an important role of oxidative status in infection outcome and parasite transmission
    • 

    corecore